Discussions and Conclusions: The optimal matching and tuning response of the probe includes the frequency of 3He, 19F and 1H at 4.7T. The most recent approach to perform multinuclear images was developed for working at 3T with a coil working at 1H and 19F nuclei frequencies [1].

The use of saddle coil minimizes the number of varicaps in the final configuration and avoids the inclusion of several DC biases allowing a noise reduction. The new design assures high stability and digital noise isolation; it also facilitates autonomous work after pre-programming without the need for introducing an expensive, highly isolated operational amplifier.

The main advantages of the system are time saving and operation versatility, crucial aspects to avoid noble gas depolarization.

References:

420

Optimized rf-coils with simulations of rat anatomical models
S. Junge; Mri, RF Development, Ettlingen, GERMANY.

Introduction: Coil development guided by simulations at high fields for calculating the B1-field distribution in loads, like anatomical models, is very useful for improving and optimizing the coil performance. We present simulation techniques and a rat head anatomical model which are useable for simulations of rf-coils for mapping the absolute B1-fields and their optimizations.

Subjects and Methods: We used moment methods (CONCEPT II [1]) to solve Maxwell’s equations in three dimensions with surface coils and a rat model as load fixing the boundary conditions. Dielectric, lossy bodies are defined by the shapes fixing their boundaries with the material constants found in table 1.

<table>
<thead>
<tr>
<th>Tissue Avg.</th>
<th>Permittivity</th>
<th>Conductivity [S/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain</td>
<td>56.064735</td>
<td>0.507771</td>
</tr>
<tr>
<td>Skull</td>
<td>19.181932</td>
<td>0.134992</td>
</tr>
<tr>
<td>Muscle</td>
<td>60.868004</td>
<td>0.764407</td>
</tr>
</tbody>
</table>

Table 1. Material constants [3]

The coils are introduced by their surfaces with wires including the lumped elements. We used the main tissues muscle, bone and brain, which have an effect for the B1-field distribution in a rat head. Segmented rat MR-Images were used as basic input for the program package vtk [2] to build up triangulated surfaces for the different tissues. In a second step the number of triangles for all surfaces were decimated as much as possible under protection of preserving their topology.

In the past the efficiency of the used methods and techniques and their comparison with measurements [4] were demonstrated. The rat anatomical model was used to make parameter studies for optimizing linear and quadrature surface coils for brain imaging.

Results and Discussion: Different coil sizes from 5mm up to 45mm were simulated as curved shaped designs. The absolute B1-field values of the right hand side (rhs) component of the results were compared and the field distribution over the whole rat brain was weighted for a most homogenous image (figure 1 right). We got the best result with a combination of circular coil and a butterfly coil on a curved shape with a diameter of 34 mm (figure 1 left). This result was compared with measurements of an existing coil with about the same dimensions. These first comparable results are a good basis to start optimizations for array coils.

References:
1. ConceptII TU Hamburg-Harburg
2. Visualization Toolkit. www.kitware.com
4. S. Junge, Seifert, F., Rinneberg, H., ESMRMB 19, 424

Figure 1: Rat model with coil (left) and calculated rhs component of the B1-field (right) of an optimized quadrature surface coil 200MHz

421

RF-receiver coil for lung imaging at 0.15 Tesla
A. Benattayallah1, J. Owers-Bradley2, R. W. Bowtell2; 1Diagnostic Radiology, University Hospital, Philippus University, Marburg, GERMANY, 2Physics and Astronomy, University of Nottingham, Nottingham, UNITED KINGDOM.

Introduction: The design of the rf coil plays an important role in determining the signal-to-noise ratio (SNR) and hence the quality of the image, particularly at low-field where the coil noise dominates the total noise.

The purpose of this work was to improve the image quality compared to a commercial chest coil (CC), which is a saddle-solenoid quadrature coil. A highly sensitive elliptical Helmholtz (EH) quadrature receive coil, have been constructed specifically to fit closely around the human chest and to allow registered acquisition of both 1H and 3He images.

Methods: The EH quadrature coil was constructed applying a combination of an identical pair of EH linear coils (Figure 1 shows the circuit). Investigations were carried out in a 0.15T permanent magnet (ICG) with a horizontal field direction (perpendicular to patient-axis). This require the used of coil geometry which is different to that used in conventional system.

All proton images were acquired with a 2D-GE sequence. Parameters for phantom images were: 256*256, TR/TE: 200ns/14ms, and FOV 300mm and for the chest images: 128*128, TR/TE: 25ms/5ms, FOV 440mm, and slices 13mm. Additionally, 3He lung images were acquired with a single shot RARE sequence (inter-echo time 18ms, FOV 434mm, and echoes 64)1.
Results: Measurement of the quality factor, frequency shift and input impedance were performed on the workbench, while field distributions and SNR were evaluated in the scanner with a 3 litters cylindrical CuSO$_4$ phantom (0.5g/l). Signal profiles cross images of the phantom (left to right) acquired with the CC and the EH quadrature coils are depicted in Figure 2, showing a clear improvement in MR signal without any homogeneity degradation (the sensitivity of the EH coil was 243% higher than the CC coil). In vivo lung images of a healthy volunteer (registered 1H and 3He images in transverse and coronal plane) acquired with EH quadrature coil are shown in Figure 3.

Discussion: The EH coil seems to be a good choice for lung imaging, since its elliptical shape conforms more closely to the human chest contour. Such a coil offers an increase in the sensitivity without suffering from any signal non-uniformity. The EH coil had 180% increase in SNR over the CC coil because of their optimum region of sensitivity, which restrict the amount of anatomy contributing to noise. The EH coil had 180% increase in SNR over the CC coil because of their optimum region of sensitivity, which restrict the amount of anatomy contributing to noise.

Methods and Results: The novel system is made of three identical circular loop (diameter 6 cm) RF coils, tuned to f0=100.01 MHz when isolated. The three RF coils were positioned perpendicular to each other and the center-to-center coil distance, between each pair, was 8.5 cm. This configuration permits a open volume access for the sample. Due to the symmetry of the system, two resonant modes were observed (f1=99.4 MHz and f2=101.6 MHz). The lower frequency mode presents a reasonable homogeneous B1 spatial distribution and it can be set to the desired Larmor frequency. This mode is used for high efficiency RF pulse transmission and FID signal detection. Two of the RF surface coils were connected in double channel RX configuration as previously described. The attenuation and phase-shift values of the auxiliary RX channel were adjusted to achieve high isolation at f1. With in-phase RX (summation mode) the measured isolation showed two peaks (f1, f2) with average value of -8 dB. The isolation with out-of-phase RX (subtraction mode) showed a dip of about -66 dB at f1; and at f2 the isolation presented a peak of -19 dB.

Conclusions: We have shown that the double channel RX equipped with surface coils achieves very high isolation at the Larmor frequency. Potential applications of this work are in NMR imaging of solid materials, porous media, and solvent diffusion in solids. Here restricted motion of the probed spins leads to broad lines and very-short relaxation times (100 µs or less). Electron Paramagnetic Resonance (EPR) imaging of paramagnetic probes with ultra-short (10 µs or less) relaxation times is also an important application of the receiver described here.

References: